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Since childhood, I have known of simple tests for divisibility for certain numbers:

Divisibility by 2

If the number being tested ends in 0, 2, 4, 6, or 8, the number is divisible by 2 (even).

Divisibility by 3

Simply add up the digits of the number being tested. If the result is divisible by 3, the original number is also divisible by 3.

If the sum is too large to be able to detect divisibility by 3 by inspection, the process can be repeated.

Examples:

8967588 :   8+9+6+7+5+8+8 = 51;   5+1 = 6, which is divisible by 3 – as is 8967588.

754  :   7+5+4 = 16; 1+6 = 7, which is not divisible by 3 – and neither is 754.

Divisibility by 4

The number being tested is required to be even; furthermore, if the last digit is 0, 4, or 8, then the "tens" digit must be even, but if the last digit is 2 or 6, the "tens" digit must be odd.

Examples: 

724, 568, and 7954632 are all divisible by 4; but 714, 558, and 7954602 are not.

Divisibility by 5

Very simple: if the number being tested ends in 5 or 0, it is divisible by 5; otherwise it is not.

Divisibility by 6

If the number being tested is both even (divisible by 2) and divisible by 3, then it is divisible by 6; otherwise it is not. (Just perform both tests.)

Divisibility by 8

Things are starting to get a bit messy here. We have to bring the "hundreds" digit into consideration. The crucial fact is that 8 will divide into 200 (or any even number of hundreds – 400, 600, 800 etc.), but not 100 (or any odd number of hundreds – 300, 500, 700 etc.). In fact, for numbers like 300, 500, 700 etc., the remainder on division by 8 is always 4.

If the number of hundreds is even, then we require the last two digits to be divisible by 8. This requires the last two digits to be an "even" multiple of 4 (i.e. 2 x 4, 4 x 4, 6 x 4 etc.). Thus 32, 656, and 872 are all divisible by 8. On the other hand, if the number of hundreds is odd, only "odd" multiples of 4 are allowed for the last two digits (i.e. 3 x 4, 5 x 4, 7 x 4 etc.). Thus 136, 752, and 976 are all divisible by 8.

This has always seemed rather unsatisfactory to me. Quite frankly, I think that it's probably easier and more straightforward to either do a quick mental division of the last three digits by 8, or mentally halve the number twice and see if the result is even. (Of course, if the first halving yields an odd number, you wouldn’t bother to proceed with the second.)

I know of no simpler test for divisibility by 8. What follows will not throw any further light on this matter; I should be most interested if anyone knows of a better test.

Divisibility by 9

Mercifully, things become very much simpler here – surprisingly so, in fact.

Essentially, the test is exactly analogous to the case for 3. All we have to do is add up the digits; if the result is divisible by 9, then so is the number being tested; otherwise it's not. Again, if the sum is large, the test can be repeated as many times as necessary to get a small number which is "obviously" divisible by 9.

This process even has a name – "casting out nines". The reason for this is that, if the number being tested is not divisible by 9, the ultimate small number resulting from the process is the remainder when the number is divided by 9. (Try it and see.) Note, however, that this doesn't work consistently for 3; thus the term "casting out threes" is not useful. (It may be interesting to analyse when it does work, and when it doesn't; but this will not be discussed here.)

Divisibility by 10

Things get really easy here – if the number being tested ends in a 0, it's divisible by 10 – otherwise, it isn't!

Divisibility by 11

A quite easy test this time: add up alternate digits to get one sum, and add up the other alternate digits to get a second sum. If these sums are equal, or differ by a multiple of 11 (and a further test could be used on the difference if necessary), the number is divisible by 11 – otherwise it's not.

Examples:

6248  -   6 + 4 = 10;  2 + 8 = 10 – the same, so 6248 is divisible by 11.

8041  -   8 + 4 = 12;  0 + 1 = 1 – this time they differ by 11, so 8041 is divisible by 11.

Divisibility by 12

It's quite easy to combine divisibility tests for 3 and 4 (see above). If both work, then the number being tested is divisible by 12.

*
*
*
*
*
*
*
*

The tests described above are all reasonably straightforward (with the possible exception of 8). One thing that they all have in common is that they don't provide information about the quotient – the result of actually doing the division. That's fine – all we expect of a divisibility test is information as to whether we would get an exact (integer) answer if we were to go ahead with the division.

*
*
*
*
*
*
*
*

Notable by its absence is a test for divisibility by 7.

This used to worry me – until I eventually came across such a test. This seemed quite unlike any of the other tests described above.

The procedure is as follows:

Strip the last digit from the number being tested. Double it, and find the difference between the result and the number fragment left after the stripping. Repeat the procedure on the difference if necessary, until the resulting number is small enough to be tested for divisibility by 7 by inspection. If it is divisible by 7, then so was the original number.

Example:

24983
:   strip the 3 off, leaving 2498. Double the 3, giving 6. Subtract 6 from 2498  :   2492.

2492
:   strip the 2 off, leaving 249. Double the 2, giving 4. Subtract 4 from 249  :   245.

245
:   strip the 5 off, leaving 24. Double the 5, giving 10. Subtract 10 from 24   :  14.

We could stop here – we all know that 14 = 2 x 7 – but let's continue:

14
:   strip the 4 off, leaving 1. Double the 4, giving 8. Subtract 1 from 8   :  7.

Convinced?

Well, if you’re a true mathematician you won't be. You will require proof!

Suppose we represent our test number, N, as  10X + Y , where X and Y are both positive integers, and Y is less then 10 (i.e. a single digit). At the first step, we form the number  2Y – X . Let us call it  Z .

Now,  Z  may or may not be divisible by 7. Suppose we multiply it by 10, forming the number  10Z = 20Y – 10X . As 10 and 7 are relatively prime (i.e. they have no common factors),  10Z will be divisible by 7 if Z is divisible by 7, and won't be if it's not; thus that particular property is not affected as a result of the multiplication by 10.

Now let's add 10Z and N:

N + 10Z = (10X+Y) + (20Y – 10X)



= 21Y

therefore           N
= 21Y – 10Z

Now, whatever Y is, 21Y is divisible by 7 because 21 is divisible by 7. Since we've already established that Z and 10Z are either both divisible by 7 or both not, it follows that N will be divisible by 7 if Z is, and won't be otherwise. Thus we have established that the test is mathematically sound.

If you understand that, NOW you can be convinced!

*
*
*
*
*
*
*
*

Thus we have serviceable divisibility tests for all the standard "times tables" (i.e. up as far as 12). Can we produce more?

It is apparent that it's only necessary to produce tests for prime numbers, since composite numbers can be tested for by applying tests for each of their prime factors, as mentioned earlier with reference to 6 and 12. Thus, 14 (= 2 x 7) and 15 (= 3 x 5) can be tested for by applying the appropriate prime divisor tests. 16 can be handled, at a pinch, by continued halving, much as discussed above for the alternative method for 8. 18 (= 2 x 9) can be treated as for 14 and 15. 20 is easy: must end in 0, and the "tens" digit must be even.

- And so on.

How about the primes 13, 17, 19 etc.?

*
*
*
*
*
*
*
*

Frankly, who cares? Why bother?

No doubt professional mathematicians would consider these matters important, if only because number theory must be incomplete without their consideration. Perhaps other scientific and technical professions can find practical uses for divisibility tests. Perhaps you can enlighten me.

Notwithstanding all this, I have my own very important reasons for requiring them.

As a poor student, I once had a need to make considerable use of public transport – namely, buses. In those days, one was issued with a bus ticket made of paper with a number on it. The number typically had four, five, or perhaps six digits. It was a matter of considerable importance to me to mentally reduce it to its prime factors before the journey's end. In those days I had at my command the divisibility tests for all the integers up to 12, excluding 7.

For 7 and higher primes, I was forced to actually do the division in my head. This didn't hurt because my head is fairly well equipped for such activities; however, now, when I think of how much more efficiently I might have conducted my task with the aid of the tools I have now, I can only wallow in self-pity at how hard my life has been.

More recently, when the car has been in for service or repairs, I have had to use the buses again, thus once again requiring the aid of my Divisibility Tests. (Unfortunately, things have changed since then – the bus ticket is now made of cardboard and bears an ugly little strip of magnetic plastic tape instead of a good, honest-to-goodness, factorizable number.) Even when the car is working, and the need arises for stopping at traffic lights, the urge to factorize the number-plate of the car directly in front must be assuaged – albeit only involving four digits – in considerably less time than a full-scale bus trip! 

(Don't judge, brother. I happen to know that I am not the only mortal afflicted with this vice. Let him who is without sin cast the first stone!)

So, having established the dire need for divisibility tests, let us proceed.

*
*
*
*
*
*
*
*

The next logical prime divisor to tackle is 13.

It occurred to me that it may be possible to find a test similar to that for 7. With that in mind, I considered the proof of the validity of the 7 test (given above) in an effort to find clues as to how to proceed. My reasoning went something like this:

As before, let us represent our test number, N, as  10X + Y , where X and Y are both positive integers, and Y is less then 10 (i.e. a single digit). Now form the number  kY – X . Let us call it  Z . The object of the exercise is to find a value of k for which Z is divisible by 13 precisely when N is.

As before, let us form the number 10Z, and add it to N:

N + 10Z = (10X+Y) + (10kY – 10X)



= (1 + 10k)Y

therefore           N
= (1 + 10k)Y – 10Z

Now we find a positive integer value of k which will make (1 + 10k) divisible by 13.  Trial-and-error shows that if k = 9, (1 + 10k) = 91 which is 7 x 13.

Well, let's try it!

Following the earlier lead in the case of 7, we note that 10 and 13 are relatively prime, thus Z and 10Z will either both be divisible by 13, or both not. Having chosen k to be 9, we now have


           N
= 10Z – 13.(7Y)

- so that N and 10Z – and hence N and Z – will either both be divisible by 13, or both not.

So we appear to have our test for 13. Let's give it a try:

Let N = 65 (which we know is equal to 5 x 13). Split the 5 off, and multiply it by 9, giving 45. Subtract 6, giving 39. We know that 39 = 3 times 13; however, if we weren't sure, we could apply the test to 39:

9 times 9 – 3 = 78, which is 6 x 13 … and unfortunately bigger…

8 x 9 – 7 = 65 … which is where we started. Thus we have a cyclic process. To break out of it, we need to know that at least one of 65, 39, or 78 is divisible by 13.

On the face of it, this looks like a problem. It's perhaps not too serious in this case, because the numbers are not too big; we can deal with it. However, if we attempt to find similar tests for bigger prime numbers, perhaps the numbers will become unreasonably large, to the point where the test is technically sound but not practically useful.

Can we find a solution?

Instead of making Z equal to kY – X, let’s try Z = kY + X. Form 10Z, as before; and this time, we'll subtract it from N:

N – 10Z = (10X+Y) – (10kY + 10X)



= (1 – 10k)Y

therefore           N
= (1 – 10k)Y + 10Z

The only obvious difference at this point is that a plus sign and a minus sign have changed places. However, let us now go ahead and try to find a value for k which will make (1 – 10k) divisible by 13.

How about 4?

1 – 10 x 4 = 1 – 40 = -39 which is a multiple of 13.

Well, let's try it. This time, because Z = kY + X, rather than kY – X, we multiply the last digit of N, the number being tested, and ADD X, rather than SUBTRACTING it.

Let's try 65 again:

5 x 4 + 6 = 26

Well, that's an improvement already.

6 x 4 + 2 = 26

Okay – we’ve reached a loop; but at least this time the numbers are smaller, and certainly manageable.

Just for the sake of comparison, let's try 39 and 78:

9 x 4 + 3 = 39
- another loop, but at least not generating bigger numbers!

8 x 4 + 7 = 39
- again!

It seems that we'll need to know that 26 and 39 are multiples of 13.

How about 52?

2 x 4 + 5 = 13
- nice and easy.

The only two-digit number we haven't tried is 91:

1 x 4 + 9 = 13
- no problems here.

Just for luck, let's try a couple of three-digit multiples of 13, namely, 104 and 117:

4 x 4 + 10 = 26
- manageable

7 x 4 + 11 = 39
- manageable

Finally, before moving on, let's try a large multiple of 13, namely 7579:

9 x 4 + 757 = 793

3 x 4 + 79 = 91
- which goes back to 13, as before.

Go ahead and try with other larger multiples of 13. You'll find that the results are always 13, 26, or 39. (See if you can prove this.)

*
*
*
*
*
*
*
*

I haven't been strictly honest with you. In fact, when I was hunting for these tests by trial-and-error, I hit upon using 4 and adding before I came across using 9 and subtracting.

It's instructive at this point to think about things slightly differently. Suppose, instead of using 9 and subtracting, we use –9 and add instead?

N
= 10X + Y

Z
= -9Y + X

10Z
= -90Y + 10X

N – 10Z
= (10X + Y) – (-90Y + 10X)


= 91Y


= 13.(7Y)

thus   N
= 10Z + 13.(7Y)

The only difference is that we have a plus sign, rather than a minus sign, in the final expression. It doesn't make any difference – the test still works.

The important point to be made here is that we get valid tests by using both 4 and –9, adding in both cases. Note that the difference between 4 and –9 is 13.

It can be shown (not done here; try it yourself) that any number, positive or negative, a distance of a multiple of 13 on the number line from 4, will generate a valid test for divisibility by 13. Thus, 17 and –22 will work. This is not to say that tests may necessarily be useful, as the numbers generated may well become unreasonably large.

Similarly, in the case of the test for divisibility by 7 (above), we multiplied by 2 and subtracted. This is equivalent to multiplying by –2 and adding. Note that in this case, we could multiply by 5 and add. (Try it!)

Sometimes, tests can generate negative numbers. This is no problem – simply take the positive value, and then continue, as a negative number has the same (positive) factors as its positive counterpart.

As an example, consider the last line from the earlier discussion of the test for 7:

14
:   strip the 4 off, leaving 1. Double the 4, giving 8. Subtract 1 from 8   :  7.

To be consistent with the earlier lines, this should read:

14
:   strip the 4 off, leaving 1. Double the 4, giving 8. Subtract 8 from 1   :  -7.

Were it necessary to proceed further (it’s not in this case), we would replace -7 by 7 and continue as usual.

*
*
*
*
*
*
*
*

At this point, we have a procedure which can be used to generate divisibility tests for any number which is relatively prime to 10 (this assumption being an important part of the process). The numbers themselves don't even have be prime, as long as they are relatively prime to 10 – i.e. they mustn't be even or end in 5. (Try using -17 or 40 as values of k for divisibility tests for 57; not pretty, but they work – and 57 is not a prime.)

Hence we are restricted to numbers which end in 1, 3, 7, or 9. The important thing is to find that value of k which has the smallest absolute value, to keep the resulting calculated numbers as small as possible. Thus, 4 is the best choice for 13; -2 is the best choice for 7.

*
*
*
*
*
*
*
*

Having set up the basic machinery for generating divisibility tests, the next question to ask is: do we have to rely on trial-and-error to find suitable values for k, or is there an efficient functional/algorithmic approach?

It turns out that there is.

Let the number, n, for which a divisibility test is to be found, be represented by  10x + y . (Note: lower case for this, in order to avoid confusion with 10X + Y which we used to represent a number being tested for divisibility.)

Now we seek a number k such that ky + x is divisible by  n , i.e. (ky +x) is divisible by (10x + y).

Thus
ky + x
=  m(10x + y)
for some integer m

Hence
ky + x
=  10mx + my

=>
k
=  [(10m – 1)x + my]/y

=>
k
=  (10m – 1)x/y + m
(A)

Thus  10m – 1  needs to be divisible by  y ,

i.e.
10m – 1
=  cy
for some integer  c ,

i.e.
m
=  (cy + 1)/10 .

Examples:

(1.)

n = 13  =  10 x 1 + 3 ;   so that  x = 1  and  y = 3 .

m = (cy + 1)/10  =  (3c + 1)/10  is an integer if  c = 3.  Then  m = (3 x 3 + 1)/10  =  1 .

Thus  k = (10 x 1 – 1) . 1/3  + 1
[see (A) above]


= 9/3 + 1  =  4 .



************

(2.)

n = 67  =  10 x 6 + 7 ;  so that  x = 6  and  y = 7 .

m = (cy + 1)/10  =  (7c + 1)/10  is an integer if  c = 7.  Then  m = (7 x 7 + 1)/10  =  5 .

Thus  k = (10 x 5 – 1) . 6/7  + 5
[see (A) above]


= 42 + 5  =  47 .

We can improve on this by subtracting 67, yielding  k = -20 .



************

(3.)

n = 23  =  10 x 2 + 3 ;  so that  x = 2  and  y = 3 .

m = (cy + 1)/10  =  (3c + 1)/10  is an integer if  c = 3.  Then  m = (3 x 3 + 1)/10  =  1 .

Thus  k = (10 x 1 – 1) . 2/3  + 1
[see (A) above]


= 6 + 1  =  7 .



************

(4.)

n = 37  =  10 x 3 + 7 ;  so that  x = 3  and  y = 7 .

m = (cy + 1)/10  =  (7c + 1)/10  is an integer if  c = 7.  Then  m = (7 x 7 + 1)/10  =  5 .

Thus  k = (10 x 5 – 1) . 3/7  + 5
[see (A) above]


= 21 + 5  =  26 .

We can improve on this by subtracting 37, yielding –11 .



************

Just a bit more to do!

We can now summarize the procedure to find a number  k  as follows:

1. Represent the number for which a divisibility test is to be found as  10x + y, where x and y are both positive integers and y is a single-digit number. (y will be 1, 3, 7, or 9.)

2. Find a positive integer value of  c  so that  (cy + 1) is divisible by 10.

3. Set   m  equal to  (cy + 1)/10 ,

then  k  =  (10m – 1)x/y + m
[(A.) above]

Now we can add a fourth step which makes things a bit easier for practical purposes:

4. Substitute  m = (cy + 1)/10 into (A.):

          k
=   [10(cy + 1)/10 – 1]x/y  +  (cy +1)/10



=  (cy + 1 – 1)x/y  +  (cy + 1)/10



=  cx  +  (cy + 1)/10 ,  where (cy + 1) is divisible by 10.

Let  d = (cy + 1)/10, then

          k
=  cx + d .

WHEW! That's it. Now we can make up a table to display the possible values of y, c, and d.



y
|
c
d


         ----------|---------------------------



1
|
9
1




|



3
|
3
1




|



7
|
7
5




|



9
|
1
1

Using this, we can now calculate a positive value for k, given any values of x and y. If k is greater than n/2, the improved, negative value to use for k is its positive value minus n.

Here, then, is a table of best values of  k  for values of  n  up to 109:








y



|
   1       |
  3        |
  7        |
  9

      ------------|---------------|----------------|---------------|-------------

          0
|
   0
|
  1
|
  -2
|
  1
          1
|
  -1
|
  4
|
  -5
|
  2
          2
|
  -2
|
  7
|
  -8
|
  3
          3
|
  -3
|
10
|
-11
|
  4

          4
|
  -4
|
13
|
-14
|
  5

x        5
|
  -5
|
16
|
-17
|
  6
          6
|
  -6
|
19
|
-20
|
  7

          7
|
  -7
|
22
|
-23
|
  8
          8
|
  -8
|
25
|
-26
|
  9
          9
|
  -9
|
28
|
-29
|
10

        10
|
-10
|
31
|
-32
|
11
*
*
*
*
*
*
*
*

NOTES ON THE TABLE

The value of k for n=1 (i.e. 0) is shown in cyan. It is questionable whether any useful significance can be attached to this entry; it is merely given for the sake of completeness.

The value of k for n=7 (the value which inspired this entire exercise in the first place) is shown in green.

The values of k for n=3, 9, and 11 are shown in blue - more about these shortly.

The values of k for all primes not mentioned so far in these notes are shown in red. These are the perhaps the most interesting, and certainly the most useful, entries in the table.

Further notes on divisibility tests for n=3, 9, and 11

The first (odd) primes are 3, 7, and 11. As mentioned above, 7 has been the inspiration for this process; it has already been discussed in detail, and there is no need to say any more about it. 3 and 11, on the other hand, are worth a look because we already have perfectly good pre-existing tests for them, and it is interesting to explore how those "old" tests might relate to "new" tests of a similar kind to those we have been considering as the main thrust of this article.

9, although not a prime, is also of considerable interest, as it has the same value of k (i.e. 1) as 3 does, and because the "old" test for 9 works exactly the same way as the "old" test for 3. Surely there must be a connection?

*
*
*

Before proceeding, let us re-examine two aspects of our method for producing divisibility tests for numbers relatively prime to 10.

Firstly:

Recall that we represented the number N to be tested as  10X + Y , where it was assumed that  Y  is a single-digit number. Is it strictly necessary that we do this?

The answer is no, it's not necessary at all. It just happens to be convenient for practical purposes, as it's a very simple matter to strip the last digit off, call it  Y , and call the number fragment left  X . At no point in the development of the actual method was it an essential requirement that we do so.

Let us revisit the test for divisibility by 7 as applied to 91. Using the method to which we are now accustomed, we let  Y=1  and  X=9 , so that  91 =10X + Y . Then the test proceeds as follows:


91
=>
9 + 1(-2)

recall that k=-2 gives a test for divisibility by 7)




= 7

and we have a valid, simple and useful test.

Suppose, instead, that we let  Y=11  and  X=8 . What happens then?


91
=>
8 + 11(-2)




= -14

As pointed out earlier, the negative sign doesn't matter; the important thing is that 14 is a multiple of 7.

Now let's see what happens if we let  Y = 31  and  X = 6 :


91
=>
6 + 31(-2)




= -56

All right, it's not very efficient – but the crucial point is that 56 is also a multiple of 7.

In fact, it's perfectly acceptable to let  Y = -9  and  X = 10 :


91
=>
10 + (-9)(-2)




= 28

– again a multiple of 7.

[Indeed, the only real restriction we need to place on X and Y (apart from satisfying the equation N = 10X + Y) is that they both be integers, simply because tests for divisibility of integers by integers will have questionable merit if the numbers they produce are not integers also!]

The reason for pointing this out is that, in what follows, procedures may well involve values for X and Y which require that Y not be a single-digit integer.

Secondly:

Recall that tests can sometimes generate negative numbers. The way we handled such cases earlier was to take the absolute value – i.e. just remove the negative sign – before applying the test again.

It's not strictly necessary to do this. The value of N (the initial number being tested, or any further number generated as part of a multiple-step process) can be negative.

 For example, let us test  N = -117  for divisibility by 13. We can let  X = -11  and  Y = -7, to make  N = 10X + Y. The test then proceeds as follows:



-117
=>
-11 + (-7)(4)  =  -39

Alternatively, we could let  X = -12  and Y = 3  (which we obtain by adding 10 to –7):



-117
=>
-12 + 3(4)  =  0

Thus we see that both X and Y may be either positive or negative, without affecting the validity of the test being used.

----------------------

Obviously, these tests we have developed are intended to make things easier, not harder, to perform quick mental arithmetic; so we normally would avoid such mental gymnastics. The reason for explaining these matters is that they will have a direct bearing on what follows.

*
*
*

Divisibility by 3: relationship between the "old" and "new" tests

Let us first consider what the "new" test for divisibility by 3, using k=1, actually does.

Let our test number, N, be represented as



N = Ds-1 Ds-2 Ds-3.....D2 D1 D0

– by which we mean



N = 10s-1Ds-1 + 10s-2Ds-2 + 10s-3Ds-3 + ..... + 102D2 + 10D1 + D0 

where the D's are digits.

Now we strip D0 off the end, and call it Y. As a result, X will be



10s-2Ds-1 + 10s-3 Ds-2 + 10s-4Ds-3 + ..... + 10D2 + D1
Applying the test gives



D0 + 1(10s-2Ds-1 + 10s-3 Ds-2 + 10s-4Ds-3 + ..... + 10D2 + D1)


=
10s-2Ds-1 + 10s-3 Ds-2 + 10s-4Ds-3 + ..... + 10D2 + (D1 + D0)

Effectively, this gives us a new  N = 10X + Y , with  Y = D1 + D0 , and  X =



10s-3Ds-1 + 10s-4 Ds-2 + 10s-4Ds-3 + ..... + D2
(Note that, at this point, Y may be either a one-digit number or a two-digit number.)

If we repeat the process, Y will become  D2 + D1 + D0 , and X will be reduced accordingly.

(Again, note that Y may well have more than one digit at this point.)

If the process is taken to completion, Y becomes



Ds-1 + Ds-2 + Ds-3 + ..... + D2 + D1 + D0
while X shrinks to nothing.

Thus it can be seen that the "new" test produces exactly the same result as the "old" one – namely, the digits are added up – and we see that the two tests are exactly the same.

Note that exactly the same reasoning applies to the "old" and "new" divisibility tests for n=9, as k=1 again and the results are identical to those in the case of n=3 and k=1.

Divisibility by 11: relationship between the "old" and "new" tests

Now let us consider what the "new" test for divisibility by 11, using k=-1, actually does.

Let our test number, N, be represented as


N = Ds-1 Ds-2 Ds-3.....D3D2 D1 D0

– by which we mean


N = 10s-1Ds-1 + 10s-2Ds-2 + 10s-3Ds-3 + ..... + 104D4 + 103D3 + 102D2 + 10D1 + D0 

where the D's are digits.

Now we strip D0 off the end, and call it Y. As a result, X will be


10s-2Ds-1 + 10s-3 Ds-2 + 10s-4Ds-3 + ..... + 103D4 + 102D3 + 10D2 + D1
Applying the test gives


D0 + (-1)(10s-2Ds-1 + 10s-3 Ds-2 + 10s-4Ds-3 + ..... + 103D4 + 102D3 + 10D2 + D1)

=
-(10s-2Ds-1 + 10s-3 Ds-2 + 10s-4Ds-3 + ..... + 103D4 + 102D3 + 10D2) + (-D1 + D0)

Effectively, this gives us a new  N = 10X + Y , with  Y = -D1 + D0 , and  X =


-(10s-3Ds-1 + 10s-4 Ds-2 + 10s-5Ds-3 + ..... + 102D4 + 10D3 + D2)

Note that, at this point, X has become negative.

Applying the test a second time gives

(-D1 + D0) + (-1)[ -(10s-3Ds-1 + 10s-4 Ds-2 + 10s-4Ds-3 + ..... + 102D4 + 10D3 + D2)]

=
(10s-3Ds-1 + 10s-4 Ds-2 + 10s-4Ds-3 + ..... + 102D4 + 10D3) + (D2 – D1 + D0)

Again, we have a new  N = 10X + Y , with  Y = D2 – D1 + D0 , and X =


10s-4Ds-1 + 10s-5 Ds-2 + 10s-6Ds-3 + ..... + 10D4 + D3
Note that X has become positive again.

Applying the test a third time gives

(D2 – D1 + D0) + (-1)(10s-4Ds-1 + 10s-5 Ds-2 + 10s-6Ds-3 + ..... + 10D4 + D3)

=
-(10s-4Ds-1 + 10s-5 Ds-2 + 10s-6Ds-3 + ..... + 10D4) + (-D3 + D2 – D1 + D0)

Once again, we have a new  N = 10X + Y , with  Y = -D3 + D2 – D1 + D0 , and X =


-(10s-5Ds-1 + 10s-6 Ds-2 + 10s-7Ds-3 + ..... + D4)

– and we note that X has gone negative again.

We could continue; however, we've done enough to establish a pattern: each time, X oscillates between positive and negative, but with an ever-decreasing absolute value; while Y alternately accrues by a positive or negative amount, one digit of the original N at a time.

Eventually, the X's shrink to nothing, while Y ultimately becomes the difference between the two sums of alternate digits in the original number N. (Note that it doesn't matter whether there is an even or an odd number of digits in the original N.) Thus, this "new" test for divisibility by 11 can be seen as just the "old" one in disguise.

----------------------

The agreement between the "old" and "new" tests for divisibility by 3, 9, and 11, combined with the fact that we have developed the "new" tests rigorously, means that the "old" tests for these numbers are now justified.

